ПОИСК
Быстрый заказ
ОЦЕНКА КУРСАобщая оценка курса:оценка преподавателя: Хочу скидку |
Этот курс продолжительностью 24 часа проходит
в дистанционном формате по будним дням (6 дней) с 09:00 до 12:00 Курс для ИТ-архитекторов и специалистов по проектированию и разработке архитектуры данных (Big Data), планированию инфраструктуры озер данных (Data Lakes) и проектов Big Data в компаниях. Теоретический курс Архитектура моделей данных содержит теоретический минимум, необходимый для эффективной прикладной работы с архитектурными моделями корпоративных репозиториев и их различными реализациями в виде реляционных хранилищ и NoSQL-сред на базе Hadoop и других технологий Big Data.
Выберите форму обучения,
чтобы увидеть актуальные даты:
РАСПИСАНИЕ ЗАНЯТИЙ
|
После изучения курса вы сможете
В результате обучения вы получите следующие знания и навыки:
- поймете базовые задачи Data Governance;
- разберетесь с основными положениями теории построения корпоративных хранилищ данных с учетом современных принципов и технологий Big Data;
- узнаете особенности процессов построения, внедрения и эксплуатации озер данных;
- получите базовые навыки обеспечения качества данных и эффективной эксплуатации корпоративных репозиториев.
Содержание курса
День 1-2
Архитектура данных как часть реализации стратегии Data Centric на уровне предприятия.
Роль и задачи архитектора данных. Data Governance.
День 3-4
Основные подходы к проектированию моделей данных ключевых компонентов Big Data-решений.
День 5-6
Основные подходы к проектированию моделей данных ключевых компонентов Big Data-решений. Метаданные. Эффективная загрузка данных.
Архитектура данных как часть реализации стратегии Data Centric на уровне предприятия.
Роль и задачи архитектора данных. Data Governance.
- Data Drivenподход. Успехи. Проблемы. Эволюция. Внедрение Data Lake: что может пойти не так?
- Application Centric vsData Centric. Когда, внедряя Big Data мы приближаемся к Data Centric, а когда отдаляемся?
- Какие проблемы мы не можем решить на уровне Data Lake/DWH. Задачи Data Governance.
- Корпоративная модель данных (EDM) как часть Data Governance
- Архитектор данных. Роли и задачи.
- Стандартизация работы с данными предприятия.
- Внедрение практик культуры работы с данными. Задачи. Процессы. Сложности.
День 3-4
Основные подходы к проектированию моделей данных ключевых компонентов Big Data-решений.
- Обобщенная схема архитектур -решений. Требования к компонентам и моделям данных.
- Понятие модели данных. Виды моделей данных. Их назначение и особенности.
- Реляционная модель данных. Нормализация и денормализация.
- Классическая концептуальная модель «сущность-связь» и ее расширения.
- Нотации и инструменты моделирования данных. Концептуальная, логическая и физическая модели данных.
- Ключевое отличие к построению моделей данных аналитических систем — работа со временем. Поддержка истории изменений.
- BEAM(Business Event Activity Modeling) — подход к проектированию моделей для аналитических задач
- Design-паттерны проектирования моделей данных
- Моделирования ядра. Подход Data Vault. Его преимущества и ограничения. Развитие подхода.
День 5-6
Основные подходы к проектированию моделей данных ключевых компонентов Big Data-решений. Метаданные. Эффективная загрузка данных.
- Итеративное развитие модели данных ядра
- Моделирование аналитических витрин. Подход Р. Кимбалла и его развитие.
- Отраслевые примеры моделей данных.
- Виды метаданных для аналитических систем.
- Эффективное обновление данных. Управление загрузкой.
Слушатели
Курс предназначен для ИТ-архитекторов, системных аналитиков и разработчиков, которым интересна тема проектирования моделей данных систем аналитического класса (озера и хранилища данных). Курс может быть также полезен руководителям Big Data-проектов и команд в области аналитики, а также специалистам направления Data Governance, ИТ-менеджерам и руководителям проектов по цифровизации.