ПОИСК
Быстрый заказ
ОЦЕНКА КУРСАобщая оценка курса:оценка преподавателя: Хочу скидку |
Практический курс для статистиков, начинающих Data Scientist’ов, архитекторов Data Lake, аналитиков и инженеров данных по подготовке Big Data к машинному обучению, моделированию и интеллектуальному анализу на примере использования Apache Spark и Python.
Данный курс является введением в подготовку данных для машинного обучения (Machine Learning) и интеллектуального анализа (Data Mining). В курсе описаны основные особенности в данных, с которыми приходится сталкиваться при их подготовке для решения бизнес-задач с помощью алгоритмов машинного обучения. Также курс включает изучение углубленных возможностей работы с «сырыми» данными, чтобы обеспечить высокое качество результатов ML-моделирования и интеллектуального анализа данных. Вы познакомитесь с расширенными библиотеками языка Python и PySpark: их возможностями и ограничениями для решения таких задач по подготовке данных к Machine Learning и Data Mining, как как первичный анализ, корректировка особенностей, получение описательных статистик и визуализация, формирование дополнительного признакового пространства и выявление наиболее значимых признаков. Самостоятельно выполненный итоговый проект по полному циклу подготовки данных поможет вам закрепить приобретенные знания и навыки, а также глубже погрузиться в практику науки о данных (Data Science).
Выберите форму обучения,
чтобы увидеть актуальные даты:
РАСПИСАНИЕ ЗАНЯТИЙ
|
Содержание курса
1. Продвинутые возможности библиотек языка Python для обработки и визуализации данных
Цель: познакомить участников с продвинутыми возможностями основных библиотек языка Python для обработки и визуализации данных и сформировать необходимые навыки по работе с данными в рассматриваемых библиотеках
Теоретическая часть:
Практическая часть: решение практических задач обработки и визуализации данных на примере табличных данных.
2. Библиотеки Python в корректировании типичных особенностей в данных
Цель: познакомить участников с основными особенностями в данных, с которыми приходится сталкиваться в реальных задачах, и научить успешно их корректировать с использованием библиотек языка Python. Продемонстрировать применение указанных подходов в случае промышленного варианта подготовки данных на примере использования Apache Spark (PySpark).
Теоретическая часть:
Практическая часть: подготовка «сырых» данных для использования в алгоритме машинного обучения с подробным анализом влияния каждой особенности датасета на конечный результат работы алгоритма
3. Подходы к построению дополнительного признакового пространства на основе исходных данных
Цель: познакомить участников с основными подходами получения дополнительных и наиболее значимых характеристик из исходных данных. Продемонстрировать влияние дополнительных признаков на улучшение метрик качества работы алгоритмов машинного обучения с использованием библиотеки Sklearn
Теоретическая часть:
Практическая часть: решение прикладной задачи построения дополнительного признакового пространства и получения наиболее значимых признаков с подробным анализом влияния рассмотренных теоретических подходов на конечный результат работы алгоритмов машинного обучения
4. Проектная работа
Цель: закрепить полученные слушателями курса знания по подготовке данных.
Теоретическая часть: краткий обзор пройденного материала со ссылками на рабочие блокноты, в которых решалась та или иная задача подготовки данных.
Практическая часть: самостоятельное решение задачи подготовки датасета для машинного обучения с использованием собственной базы данных или на лабораторном наборе от организаторов курса. Итоговый разбор работ слушателей курса.
Цель: познакомить участников с продвинутыми возможностями основных библиотек языка Python для обработки и визуализации данных и сформировать необходимые навыки по работе с данными в рассматриваемых библиотеках
Теоретическая часть:
- изучение возможностей библиотек языка Python для обработки (Pandas, NumPy, SciPy, Sklearn) и визуализации (matplotlib, seaborn) данных.
- обзор основных приемов по работе с данными:
- первичный анализ данных
- получение описательных статистик
- изменение типа данных
- построение сводных таблиц
- визуализация статистических характеристик данных (гистограммы, графики плотностей распределений, тепловые карты, «ящики с усами» и «виолончели»)
Практическая часть: решение практических задач обработки и визуализации данных на примере табличных данных.
2. Библиотеки Python в корректировании типичных особенностей в данных
Цель: познакомить участников с основными особенностями в данных, с которыми приходится сталкиваться в реальных задачах, и научить успешно их корректировать с использованием библиотек языка Python. Продемонстрировать применение указанных подходов в случае промышленного варианта подготовки данных на примере использования Apache Spark (PySpark).
Теоретическая часть:
- обзор типичных особенностей в данных и подходов к их корректировке:
- отсутствующие значения
- выбросы
- дубликаты
- подготовка данных для использования в алгоритмах машинного обучения:
- нормализация числовых данных
- преобразование категориальных значений
- работа с текстовыми данными
Практическая часть: подготовка «сырых» данных для использования в алгоритме машинного обучения с подробным анализом влияния каждой особенности датасета на конечный результат работы алгоритма
3. Подходы к построению дополнительного признакового пространства на основе исходных данных
Цель: познакомить участников с основными подходами получения дополнительных и наиболее значимых характеристик из исходных данных. Продемонстрировать влияние дополнительных признаков на улучшение метрик качества работы алгоритмов машинного обучения с использованием библиотеки Sklearn
Теоретическая часть:
- обзор подходов формирования дополнительного признакового пространства и выбора наиболее значимых характеристик
- увеличение размерности исходного признакового пространства
- постановка задачи в случае обучения с учителем — с использованием целевой переменной
- постановка задачи в случае обучения без учителя
- уменьшение размерности исходного признакового пространства
- увеличение размерности исходного признакового пространства
- подробный анализ задачи увеличения размерности исходного признакового пространства в случае обучения с учителем:
- статистические методы фильтрации признаков в задачах классификации и регрессии
- методы машинного обучения как инструменты для получения наиболее значимых признаков в данных
Практическая часть: решение прикладной задачи построения дополнительного признакового пространства и получения наиболее значимых признаков с подробным анализом влияния рассмотренных теоретических подходов на конечный результат работы алгоритмов машинного обучения
4. Проектная работа
Цель: закрепить полученные слушателями курса знания по подготовке данных.
Теоретическая часть: краткий обзор пройденного материала со ссылками на рабочие блокноты, в которых решалась та или иная задача подготовки данных.
Практическая часть: самостоятельное решение задачи подготовки датасета для машинного обучения с использованием собственной базы данных или на лабораторном наборе от организаторов курса. Итоговый разбор работ слушателей курса.
Предварительная подготовка
- опыт программирования на языке Python;
- знание основ математического анализа и математической статистики.
- прохождение курса «Основы языка Python для анализа данных и решения задач машинного обучения»