ПОИСК
Быстрый заказ
ОЦЕНКА КУРСАобщая оценка курса:оценка преподавателя: Хочу скидку |
3-дневный практический курс по основам машинного обучения для специалистов по аналитике данных, разработчиков и руководителей, которые хотят освоить базовые понятия Machine Lerning.
Курс Введение в машинное обучение представляет собой прикладные основы Machine Learning, включая всю необходимую теорию и практику по этой области искусственного интеллекта. В программе рассмотрено место машинного обучения в современной науке о данных (Data Science) и изложены математические основы методов Machine Learning. Приведены базовые задачи, которые могут быть решены с помощью методов машинного обучения: классификация, кластеризация, регрессионный анализ. Большое внимание уделено практическому решению задач с использованием методов машинного обучения на языке Python. На практике вы самостоятельно создадите, обработаете и проанализируете датасет, решив задачи регрессии, классификации и кластеризации, а также создадите собственный веб-сервис на базе модели машинного обучения. В результате освоения программы курса машинное обучение Python, вы овладеете основными навыками Machine Learning, необходимыми для решения базовых задач в области искусственного интеллекта.
РАСПИСАНИЕ ЗАНЯТИЙ
|
После изучения курса вы сможете
- понять, что такое машинное обучение и искусственный интеллект;
- знать, как эффективно использовать инструменты Data Science в бизнесе;
- разобраться с математическими основами Machine Learning;
- освоить базовые методы машинного обучения;
- обрабатывать датасеты для подготовки к моделированию;
- строить собственные модели Machine Learning;
- интерпретировать результаты моделирования.
Содержание курса
1. Место машинного обучения в области искусственного интеллекта
- Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов машинного обучения; виды данных, понятие датасета.
- Практическая часть: первичный анализ датасета, предобработка данных.
- Теоретическая часть: определение и примеры задач классификации. Математическое описание модели решающего дерева в задачи бинарной классификации. Метрики бинарной классификации.
- Практическая часть: решение задач бинарной и множественной классификаций.
- Теоретическая часть: определение и примеры задач регрессии. Математическое описание модели линейной регрессии. Метрики задач регрессии. Способы регуляризации.
- Практическая часть: решение задачи регрессии.
- Теоретическая часть: определение и примеры задач кластеризации. Математическое описание модели kNN. Связь кластеризации с понижением размерности пространства объектов датасета.
- Практическая часть: решение задачи кластеризации и понижения размерности данных.
- Теоретическая часть: сериализация/десериализация объектов в Python, фреймворк Flask.
- Практическая часть: создание веб-сервиса на фреймворке Flask.
Предварительная подготовка
- Опыт программирования