ПОИСК
Быстрый заказ
ОЦЕНКА КУРСАобщая оценка курса:оценка преподавателя: Хочу скидку |
Практический курс «Нейронные сети на Python» — основы нейросетей для аналитиков, разработчиков Big Data, руководителей и специалистов по работе с большими данными.
Курс «Нейронные сети на Python» представляет собой прикладные основы наиболее популярного метода Machine Learning, включая всю необходимую теорию и практику по этой области искусственного интеллекта. В программе рассмотрена математическая база современных нейросетевых алгоритмов. В курсе приведены базовые задачи, которые могут быть решены с помощью методов нейросетей: классификация изображений и другие прикладные кейсы распознавания образов. Большое внимание уделено практическому решению задач с использованием нейросетевых методов на языке Python. Курсы по нейронным сетям также содержат материалы по применению сверточных нейросетей в production, в т.ч. обучение нейронной сети и ее интеграция с другими программными алгоритмами. На практике вы самостоятельно создадите собственную нейросеть, решив задачи классификации с помощью этой модели машинного обучения. В результате освоения программы курса вы овладеете основными навыками создания веб-сервисов на базе нейросетей и сможете выбрать наилучшую архитектуру нейросети для конкретной бизнес-задачи.
Выберите форму обучения,
чтобы увидеть актуальные даты:
РАСПИСАНИЕ ЗАНЯТИЙ
|
После изучения курса вы сможете
- понять, что такое нейросети, машинное обучение и искусственный интеллект;
- освоить принципы функционирования нейронных сетей;
- знать, как эффективно использовать нейросетевые модели в бизнесе;
- разобраться с математическими основами нейронных сетей;
- освоить базовые методы работы с нейросетевыми алгоритмами;
- обрабатывать датасеты для подготовки к моделированию;
- научиться строить собственные модели нейронных сетей;
Содержание курса
1. Простейшие нейронные сети
- Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов машинного обучения; виды данных, понятие датасета; полносвязные нейронные сети.
- Практическая часть: первичный анализ датасета, предобработка данных, построение полносвязной нейронной сети.
- Теоретическая часть: метрики качества работы нейронной сети, градиентный спуск, алгоритм обратного распространения ошибки, эффект переобучения.
- Практическая часть: тонкая настройка нейронной сети на примере задачи классификации изображений.
- Теоретическая часть: параметры сверточных нейронных сетей, предобученные нейронные сети.
- Практическая часть: использование предобученных нейронных сетей на примере задачи классификации изображений.
- Теоретическая часть: построение набора данных, фильтрация и предобработка данных.
- Практическая часть: решение кейса.
- Теоретическая часть: сериализация/десериализация объектов в Python, фреймворк Flask.
- Практическая часть: создание веб-сервиса на фреймворке Flask.
Предварительная подготовка
- Опыт программирования на Python
- Прохождение курса «Основы языка Python для анализа данных и решения задач машинного обучения»